segunda-feira, 3 de dezembro de 2012

Aparato Morin-Atwood

Postado por Hiram Zaleski Moreira


  1. Experimento com lentes plano concava e plano convexa 




    Postado por Hiram Zaleski Moreira

     

O Pêndulo de Foucault


Uma breve história do pêndulo de Foucault.

Um dos experimentos mais famosos de Foucault, no entanto, é admirável até hoje por sua simplicidade: ele demonstrou experimentalmente que a Terra gira! Evidentemente, isso já não era posto em dúvida desde Galileu, mas tal movimento havia sido apenas deduzido, não demonstrado. Foucault simplesmente construiu um pêndulo e fê-lo manter-se oscilando. Com o passar das horas, o plano de oscilação própria do pêndulo parecia deslocar-se. Na verdade ocorria o contrário: a base, a superfície da Terra, é que se movia sob ele. Nos polos, o pêndulo de Foucault faz uma volta completa em um dia. Em uma cidade como São Paulo, situada à latitude de 20º 30', em 24 h o pêndulo gira apenas de 144º.
Hoje, o pêndulo de Foucault serve principalmente no estudo da física experimental e como curiosidade, sendo montado em lugares especialmente preparados. Sua construção é extraordinariamente simples, sendo que toda a evolução que recebeu a partir da concepção original de Foucault consiste apenas em melhoramentos superficiais. Uma das modificações foi a introdução de um sistema de excitação, destinado a fornecer, de tempos em tempos, a energia que o pêndulo perde em cada ciclo para vencer a resistência do ar, e também o atrito que o cabo de suspensão encontra ao flexionar-se. Geralmente, seu comprimento é muito grande, e isso tem uma razão: quanto maior o comprimento do pêndulo, tanto menor é o número de oscilações que ele executa por segundo. Em outras palavras, sua velocidade e a consequente resistência do ar são menores. A massa do corpo suspenso não influi no período; é conveniente, contudo, que ela seja razoavelmente elevada para que o fio de suspensão se mantenha sempre firmemente esticado. O formato do corpo deve ser esférico, o que garante melhor estabilidade. Para marcar o movimento de rotação, Foucault empregou um quadrante, sobre o qual estava montado o pêndulo. Montagens mais fáceis empregam um prato contendo areia, no qual uma agulha presa à parte inferior do corpo traça linhas, à medida que o pêndulo oscila e muda de plano de oscilação. Não é um processo muito recomendável, uma vez que, para cavar a areia, o pêndulo despende energia, à custa do movimento. Todavia se o comprimento do pêndulo e a massa de corpo suspenso forem suficientemente grandes, essa perda de energia é mínima e não chega a comprometer o processo. O pêndulo, então, pode manter-se oscilando, podendo o movimento durar até alguns dias.  Os cálculos teóricos podem prever qual será exatamente o desenho resultante.

Descrição

     O instrumento consiste em um arco que gira em volta do plano de um pendulo preso na parte superior deste arco. O arco faz referência ao planeta Terra que gira periodicamente em torno de seu próprio eixo de um jeito que não influencie no plano de oscilação do pendulo.

Materiais

- Um pedaço de aproximadamente 8x1,5x40(cm),  de Madeira MDF
- Um pedaço de madeira bruta com 5x5x10(cm).
- Uma tira de chapa de ferro com 5x100(cm).
- Dois parafusos cabeça chata
- Um  parafuso 4 cm
- Pedaço de fio dental
- Uma chumbada grande de pesca
- Ferramentas

Montagem

     Pegue a tira de ferro e faça quatro furos com uma broca de 2,5 mm nas extremidades. Faça um arco fixando as extremidades uma na outra no pedaço menor de madeira bruta. Feito isso, faça um furo no meio da madeira MDF e fixe o conjunto madeira bruta e arco nessa madeira MDF que servirá como base do sistema. Faça um furo no polo superior do arco e amarre a chumbada usando o fio dental.


Imagens do pêndulo construído:







Postado por:

Dayson de Mello Silva

Trabalho feito por:

Hiram Zaleski e Dayson de Mello Silva


Referências
http://www.geocities.ws/saladefisica9/biografias/foucault.html

O Aparelho de Morin


Uma breve história do aparelho de Morin

Um dos grandes problemas enfrentados por Galileu na época em que determinou que a distância percorrida por um corpo em queda livre é proporcional ao tempo ao quadrado, foi o de medida do tempo, já que os tempos de queda eram muito curtos. O “problema de  medida de Galileu” só foi resolvido em definitivo na segunda metade do século XIX, quando um general francês, professor do Conservatório de Artes e Ofícios de Paris, Jules Morin, constrói uma máquina que permite o registro gráfico imediato para um corpo em queda livre. O aparelho que leva o nome de “Aparelho de Morin” consiste de um cilindro girante(a velocidade constante), com uma folha de papel gráfico afixado a ele, no qual se encontra um peso(um tronco de cone munido de uma caneta) bastante próximo a ele e guiado por duas guias de arame.


Descrição

    O aparelho desenvolvido neste trabalho é um mesclado entre a máquina de Atwood e o aparelho de Morin. Um pouco diferente do aparelho de Morin, este aparato opera com um cilindro na horizontal ligado a um peso que é acelerado apenas pela gravidade.

Materiais

     Os materiais usados podem ser encontrados em marcenarias, depósitos de materiais para construção, ferro velho e lojas de ferragens e rolamentos.

  1 - Madeiras em MDF.
  2   - Tubo de PVC 5”
  3   - Tampas na mesma medida do tubo
  4   -  Um pedaço pequena de chapa galvanizada.
  5 - Pequenos rolamentos
  6 - Um eixo roscado
  7 - Porcas e rodelas
  8 - Parafusos de vários tamanhos.
  9 - Uma pequena polia.
  11 -  Cordão.
  11 - Dois Pesos.
  11 - Parafuso cabeça de gancho.
  11 - Ferramentas


Montagem

     Primeiramente monte o cilindro usando o cano e as tampas de PVC. Corte o cano com aproximadamente 70cm e fixe as tampas nas suas extremidades. Corte a barra roscada com aproximadamente 100cm, faça um furo no centro de cada tampa ou seja nas extremidades do cilindro. Atravesse o cilindro com essa barra e fixe-o no centro da barra usando as rodelas e parafusos. Em seguida monte a base que irá dar suporte para o sistema usando as madeiras de MDF. Monte o suporte na forma de um H, de modo que o cilindro caiba na parte superior desta armação em forma de H. Na sequencia, fure com uma broca da mesma espessura da barra roscada a parte de cima de modo que o eixo do cilindro atravesse a armação. Fixe os rolamentos nas extremidades onde o eixo entra em contato com a madeira, assim alivia o atrito. Feito isso, parafuse uma madeira desde uma extremidade na parte superior da armação, até a outra extremidade, confinando o cilindro dentro da armação. Esta madeira deve ser um pouco mais comprida de forma a dar suporte para a roldana. Esta roldana deve ser acoplada ao sistema por dois ganchos, aqueles parafusos com cabeça de gancho. O eixo que atravessa a roldana é feito com a sobra da barra roscada usada pra fazer o eixo do cilindro. No outro lado, na parte oposta onde você fixou a roldana, vai sobrar um pedaço do eixo, nessa parte do eixo é que fixamos a placa de chapa galvanizada. A função da chapa é manter uma velocidade constante, pois ela irá atritar com o ar. Na outra ponta do eixo, embaixo na roldana, fixe um pequeno cilindro de plástico na ponta do eixo, ou seja, na extremidade da barra roscada. Enrole um barbante nesse cilindro, e na ponta fixe um peso, é este peso que com a força da gravidade irá desenrolar o barbante e consequentemente acelerar o cilindro. Por fim, atravessem na parte superior da armação, um pouco acima do cilindro duas vias de fios, elas irão servir de trilho para o carrinho que fixamos o lápis que fará o gráfico. Este carrinho é feito com um pedaço de madeira e também é animado pela gravidade. Neste carrinho fazemos dois furos por onde passaram os trilhos feitos de fio. Fazemos outro furo no meio do carrinho e perpendicularmente ao trilho pra fixarmos o lápis.

Imagens do aparelho montado:


                                                                                       




Referências
http://www.fsc.ufsc.br/cbef/port/09-3/artpdf/a3.pdf - artigo do Professor Dr. Marcos César Danhoni Neves.

http://www.pet.dfi.uem.br/expofisica/aparelhodemorin.html



Postado por:

Dayson de Mello Silva

Trabalho realizado por:

Hiram Zaleski e Dayson de Mello Silva

segunda-feira, 26 de novembro de 2012

Espectroscópio


O experimento a seguir é do ramo da espectroscopia da luz. Para entender o funcionamento desse instrumento, é necessária a compreensão de alguns conceitos físicos de antemão.

O primeiro deles, difração, o que é?

Difração é um fenômeno que ocorre com as ondas quando elas passam por um orifício ou contornam um objeto cuja dimensão é da mesma ordem de grandeza que o seu comprimento de onda. Como este desvio na trajetória da onda, depende diretamente do comprimento de onda, este fenômeno é usado para dividir, em seus componentes, ondas vindas de fontes que produzem vários comprimentos de onda.

Para a luz visível, usa-se uma rede de difração, formada por uma superfície refletiva ou transparente em que se marcam vários sulcos, bem próximos uns dos outros. Exemplos destas redes e suas propriedades: quando se olha um tecido de trama fina contra uma lâmpada distante, quando olhamos o reflexo num CD ou quando olhamos a Lua através de uma nuvem, vemos faixas ou halos coloridos, devido à difração da luz por pequenos obstáculos (a trama, os sulcos do CD ou as gotículas de água na nuvem).

A difração, como dito acima, está relacionada com a interação de uma onda com um obstáculo, ou então quando encontra um orifício através do qual possa atravessar um obstáculo.

A onda então, ao contornar ou atravessar um obstáculo, toma diferentes caminhos (diferentes trajetórias), cujos comprimentos totais podem variar. 

O segundo conceito, dispersão, o que é?

 Dispersão na ótica é o fenômeno que causa a separação de uma onda em várias componentes espectrais com diferentes frequências. Devido à dependência da velocidade da onda com sua frequência, ao se mudar a densidade do meio, ondas de diferentes frequências irão tomar diversos ângulos na refração.

Em geral, o índice de refração é uma função da freqüência, ou alternativamente, com respeito ao comprimento de onda. O comprimento de onda depende do índice de refração do material de acordo com a fórmula. O efeito mais freqüentemente visto da dispersão é a separação da luz branca no espectro de luz por um prisma.

Como um prisma é mais denso que o ambiente, para cada freqüência há um ângulo de refração diferente, como a cor branca é uma composição de todas as cores, ou a sobreposição de várias ondas de diferentes frequências, se dá a dispersão separando cada uma dessas frequências por um ângulo de refração diferente.

No nosso instrumento de trabalho, queríamos fazer algo simples que pudéssemos ver esses efeitos da difração e da dispersão da luz.

Fazer uma fenda ou um instrumento de desvio é simples, porém o prisma exige um pouco mais de trabalho. Para isso, no lugar do prisma, utilizamos um CD. Mas, por que um CD?

Sabemos que o CD é uma rede de difração e esse dispositivo ótico consiste em uma superfície com um grande número de ranhuras muito estreitas e comprimidas umas nas outras. Por um processo que é descrito nos livros-texto de Ótica, ao passar ou ser refletida por essas ranhuras, a luz se dispersa em suas cores componentes.

As trilhas do CD onde os sons estão codificados, são muito estreitas e comprimidas, como as ranhuras da rede de difração. É exatamente por isso que o CD apresenta cores tão vívidas quando reflete a luz em certos ângulos.

Podemos usar o CD para dispersar a luz proveniente de diversas fontes e observar diferentes tipos de espectro. A fonte mais natural é a luz solar, que se dispersa nas cores visíveis, as cores do arco-íris, no entanto, normalmente utiliza-se a luz de uma lâmpada para a realização do experimento.

Descrição do experimento.

A construção desse experimento é muito fácil. Para realizá-la deve-se pegar um tubo quadrado (prisma quadrangular) e em uma de suas bases fazer uma fenda como na figura a seguir.

Figura  1: Fenda em uma das faces do prisma quadrangular
Na outra base, deve ser feita um orifício por onde se analisará o espectro da luz. Nessa mesma base, um pedaço de lâmina de CD deve ser colocado na frente do orifício para que ocorra a dispersão da luz.

Figura 2: Orifício na face oposta a fenda.

Tudo deve ser vedado utilizando uma fita Kraft. E somente a fenda e o pequeno orifício ficarão abertos.

Figura 3: Tudo vedado.

Depois de pronto aponte o tubo para uma luz que passe exatamente pela fenda.

Figura 4: Pessoa usando o experimento.

A imagem observada dentro do tubo será parecida com essa:

Figura 5: Imagem observada no interior do tubo.

Ali estão os espectros da luz! E aquela luz lá no fundo é a fenda.

Bom, é isso.

Divirtam-se!

Postado por: Fábio Viudes.






Como medir a espessura de um fio de cabelo utilizando um laser


Utilizaremos um processo bem simples, é um processo conhecido por interferência de onda. 

Utilizar um laser é a forma de conseguir um baixo erro experimental, por se tratar de uma fonte de luz que além de conhecermos seu comprimento de onda, também sabemos que seus fótons viajarão em linha reta, tendo como possível a realização do experimento de dupla fenda.

O procedimento descrito permitirá calcular o diâmetro de um fio de cabelo, nylon, cobre ou outro que você desejar. O ideal são fios de menos de 0,5 mm de diâmetro, já que fios mais espessos produzem espectros de difração difíceis de se tratar em laboratório.

No experimento será necessário:

_ Um laser de comprimento de onda conhecido. 
_ Um fio de cabelo (preferencialmente)
_ Uma fita adesiva grossa
_ Uma trena
_ Uma régua

Posicione o laser de forma que o feixe incida no fio de cabelo paralelamente ao plano da mesa. Você observará diversos pontos claros na parede; os mínimos são as regiões escuras entre um máximo e o seguinte.

Você encontrara uma situação parecida com a da figura:

Figura 1: Simulação da situação experimental.

Meça a distância entre o fio e o ponto central do laser (x), meça as distancias entre os mínimos para obter uma média (y). Para calcular utilize a formula para encontrar a espessura do fio de cabelo (e).


Esta letra grega representa o valor do comprimento de onda da luz do laser.





Teremos então a medida do fio de cabelo, que é, em média, em torno de 50 a 80 milésimos de milímetros. 



Postado por: Ghiovani Zanzotti Raniero
                          Thiago V. M. Guimarães